15 research outputs found

    Global warming and recurrent mass bleaching of corals

    Get PDF
    During 2015–2016, record temperatures triggered a pan-tropical episode of coral bleaching, the third global-scale event since mass bleaching was first documented in the 1980s. Here we examine how and why the severity of recurrent major bleaching events has varied at multiple scales, using aerial and underwater surveys of Australian reefs combined with satellite-derived sea surface temperatures. The distinctive geographic footprints of recurrent bleaching on the Great Barrier Reef in 1998, 2002 and 2016 were determined by the spatial pattern of sea temperatures in each year. Water quality and fishing pressure had minimal effect on the unprecedented bleaching in 2016, suggesting that local protection of reefs affords little or no resistance to extreme heat. Similarly, past exposure to bleaching in 1998 and 2002 did not lessen the severity of bleaching in 2016. Consequently, immediate global action to curb future warming is essential to secure a future for coral reefs

    Case Reports1. A Late Presentation of Loeys-Dietz Syndrome: Beware of TGFβ Receptor Mutations in Benign Joint Hypermobility

    Get PDF
    Background: Thoracic aortic aneurysms (TAA) and dissections are not uncommon causes of sudden death in young adults. Loeys-Dietz syndrome (LDS) is a rare, recently described, autosomal dominant, connective tissue disease characterized by aggressive arterial aneurysms, resulting from mutations in the transforming growth factor beta (TGFβ) receptor genes TGFBR1 and TGFBR2. Mean age at death is 26.1 years, most often due to aortic dissection. We report an unusually late presentation of LDS, diagnosed following elective surgery in a female with a long history of joint hypermobility. Methods: A 51-year-old Caucasian lady complained of chest pain and headache following a dural leak from spinal anaesthesia for an elective ankle arthroscopy. CT scan and echocardiography demonstrated a dilated aortic root and significant aortic regurgitation. MRA demonstrated aortic tortuosity, an infrarenal aortic aneurysm and aneurysms in the left renal and right internal mammary arteries. She underwent aortic root repair and aortic valve replacement. She had a background of long-standing joint pains secondary to hypermobility, easy bruising, unusual fracture susceptibility and mild bronchiectasis. She had one healthy child age 32, after which she suffered a uterine prolapse. Examination revealed mild Marfanoid features. Uvula, skin and ophthalmological examination was normal. Results: Fibrillin-1 testing for Marfan syndrome (MFS) was negative. Detection of a c.1270G > C (p.Gly424Arg) TGFBR2 mutation confirmed the diagnosis of LDS. Losartan was started for vascular protection. Conclusions: LDS is a severe inherited vasculopathy that usually presents in childhood. It is characterized by aortic root dilatation and ascending aneurysms. There is a higher risk of aortic dissection compared with MFS. Clinical features overlap with MFS and Ehlers Danlos syndrome Type IV, but differentiating dysmorphogenic features include ocular hypertelorism, bifid uvula and cleft palate. Echocardiography and MRA or CT scanning from head to pelvis is recommended to establish the extent of vascular involvement. Management involves early surgical intervention, including early valve-sparing aortic root replacement, genetic counselling and close monitoring in pregnancy. Despite being caused by loss of function mutations in either TGFβ receptor, paradoxical activation of TGFβ signalling is seen, suggesting that TGFβ antagonism may confer disease modifying effects similar to those observed in MFS. TGFβ antagonism can be achieved with angiotensin antagonists, such as Losartan, which is able to delay aortic aneurysm development in preclinical models and in patients with MFS. Our case emphasizes the importance of timely recognition of vasculopathy syndromes in patients with hypermobility and the need for early surgical intervention. It also highlights their heterogeneity and the potential for late presentation. Disclosures: The authors have declared no conflicts of interes

    Owner-Level Taxes and Business Activity

    Full text link

    Source of the quaternary alkalic basalts, picrites and basanites of the Potrillo Volcanic Field, New Mexico, USA: lithosphere or convecting mantle?

    Get PDF
    The <80 ka basalts–basanites of the Potrillo Volcanic Field (PVF) form scattered scoria cones, lava flows and maars adjacent to the New Mexico–Mexico border. MgO ranges up to 12·5%; lavas with MgO < 10·7% have fractionated both olivine and clinopyroxene. Cumulate fragments are common in the lavas, as are subhedral megacrysts of aluminous clinopyroxene (with pleonaste inclusions) and kaersutitic amphibole. REE modelling indicates that these megacrysts could be in equilibrium with the PVF melts at 1·6–1·7 GPa pressure. The lavas fall into two geochemical groups: the Main Series (85% of lavas) have major- and trace-element abundances and ratios closely resembling those of worldwide ocean-island alkali basalts and basanites (OIB); the Low-K Series (15%) differ principally by having relatively low K2O and Rb contents. Otherwise, they are chemically indistinguishable from the Main Series lavas. Sr- and Nd-isotopic ratios in the two series are identical and vary by scarcely more than analytical error, averaging 87Sr/86Sr = 0·70308 (SD = 0·00004) and 143Nd/144Nd = 0·512952 (SD=0·000025). Such compositions would be expected if both series originated from the same mantle source, with Low-K melts generated when amphibole remained in the residuum. Three PVF lavas have very low Os contents (<14 ppt) and appear to have become contaminated by crustal Os. One Main Series picrite has 209 ppt Os and has a Os value of +13·6, typical for OIB. This contrasts with published 187Os/188Os ratios for Kilbourne Hole peridotite mantle xenoliths, which give mostly negative Os values and show that Proterozoic lithospheric mantle forms a thick Mechanical Boundary Layer (MBL) that extends to 70 km depth beneath the PVF area. The calculated mean primary magma, in equilibrium with Fo89, has Na2O and FeO contents that give a lherzolite decompression melting trajectory from 2·8 GPa (95 km depth) to 2·2 GPa (70 km depth). Inverse modelling of REE abundances in Main Series Mg-rich lavas is successful for a model invoking decompression melting of convecting sub-lithospheric lherzolite mantle (Nd = 6·4; Tp 1400°C) between 90 and 70 km. Nevertheless, such a one-stage model cannot account for the genesis of the Low-K Series because amphibole would not be stable within convecting mantle at Tf 1400°C. These magmas can only be accommodated by a three-stage model that envisages a Thermal Boundary Layer (TBL) freezing conductively onto the 70 km base of the Proterozoic MBL during the 20 Myr tectonomagmatic quiescence before PVF eruptions. As it grew, this was veined by hydrous small-fraction melts from below. The geologically recent arrival of hotter-than-ambient (Tp 1400°C) convecting mantle beneath the Potrillo area re-melted the TBL and caused the magmatism

    New insights into crustal contributions to large volume rhyolite generation at the mid-Tertiary Sierra Madre Occidental Province, Mexico, revealed by U-Pb geochronology

    No full text
    Voluminous (≥3.9 x 105 km3), prolonged (~18 Myr) explosive silicic volcanism makes the mid-Tertiary Sierra Madre Occidental of Mexico one of the largest intact silicic volcanic provinces known. The rhyolites are generally considered to have formed by closed-system fractional crystallisation from crustally contaminated andesitic parental magmas (AFC), with 33 to ~100 % of the dated population, and most antecrysts range in age between ~20 and 32 Ma. A sub-population of the antecrystic zircons is chemically distinct in terms of their high-U (>1000 ppm to 1.3 wt%) and HREE contents, and are not present in the Oligocene ignimbrites in the northeastern sector of the SMO. The combination of antecryst zircon U-Pb ages and chemistry suggest that much of the zircon in the youngest rhyolites was derived by remelting of partially molten to solidified igneous rocks formed during preceding phases of Sierra Madre Occidental volcanism. Strong Zr-undersaturation, and estimations for very rapid dissolution rates of entrained zircons preclude coeval mafic magmas being parental to the rhyolite magmas by a process of lower crustal assimilation followed by closed-system crystal fractionation (AFC) as interpreted in previous studies of the Sierra Madre Occidental rhyolites. Mafic magmas were more likely important in providing a long-lived heat and material flux into the crust resulting in the remelting and recycling of newly formed igneous materials

    Pricing Revolution: From Abstract Expressionism to Pop Art

    No full text

    Students' participation in collaborative research should be recognised

    No full text
    Letter to the editor
    corecore